
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling and Visualizing Dynamic Associative Networks:  

Towards Developing a More Robust and Biologically-Plausible 

Cognitive Model 

 

 

By Michael Zlatkovsky 

University of Evansville



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

ABSTRACT 

When modeling imprecise datasets – datasets such as visual sensory input or various 

other data from the “real world” – traditional computational models are often inadequate at 

capturing and predicting the data.  Various “untraditional” models, such as Artificial Neural 

Networks, are therefore used for pattern-matching and fuzzy-logic types of tasks.  Yet, even 

despite their greater flexibility over traditional PC-like computational models, ANNs are still 

limited by their fundamentally static nature, whereby their learning is based on the 

systematically-assigned weighted connection across the entire network, rather than on the basis 

and structure of the networks’ experiences.  Training and re-training the networks therefore 

requires a tedious and computationally-intensive process of adjusting the networks’ weighted 

connections, until a satisfactory number of inputs produce their corresponding outputs.   

My senior project in Modeling and Visualizing Dynamic Associative Networks, under 

the guidance of Dr. Anthony Beavers, is an attempt to step outside the bounds of this traditional 

cognitive computational model and study the individual relationship between nodes in a network.  

Because of their dynamic nature, DANs exhibit ANN-like pattern-matching and rudimentary 

cognitive abilities, yet they are able to learn continuously (without re-training) and are structured 

in a biologically-plausible way that directly reflects their underlying knowledge representations. 

 

 

BACKGROUND:  WHY NEURAL NETS, AND WHY NOT NEURAL NETS 

The desktop PC, despite its raw computational powers, is ill-equipped for pattern-

matching, associative tasks, or for dealing with imprecise data (such as visual information 

obtained the real world, where objects appear in countless variations, occlude each other, or 

grow unrecognizable under the influence of lighting and shadowing).  One alternative to these 

failings of traditional computational models has been to employ Artificial Neural Networks 

(ANNs, or “Neural Nets” for short) for these pattern-matching and fuzzy-logic types of tasks.  

Neural Nets encompasses a fairly broad class of similarly-structured cognitive models, but the 

variations come more in terms of training the networks, rather than the underlying structure.  The 

networks are composed of a set of “input nodes”, a larger and more complex set of “hidden 

nodes”, and a final set of “output nodes”.  The nodes are connected amongst themselves by series 

of “paths”, with some paths more “weighted” than others.  Whenever a node is activated, it 

passes its activation value (some number, representing the relative strength of the activation) 

down the paths; each path, in turn, multiplies the activation value that passes through it by the 

path’s “weight”, so that the activation value on the other end of the path is some multiple of the 

original activation value.  The receiving node then sums all of the activation values from its 

various incoming paths, and sends the resulting activation value further down the network, all the 

way to the output layer (see Figure 1 for a visual interpretation of the above description) [2]. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

 

Figure 1:  A very basic artificial neural network.  The thickness of the arrows represents the 

weighted strengths of the connections. 

 

From whence comes the power of the Neural Networks?  From the interconnected nature 

of the nodes.  For instance, unlike a traditional PC, a Neural Network does not need specific 

instructions or heuristics to help it identify a rose in a visual scene:  just show it a picture of a 

rose (in the input layer), tweak the weights of the paths between the nodes until the output “rose” 

is activated, and then you’re done!  The next time that the same rose image is presented to the 

network, the output of “rose” will be obtained; more importantly, the next time that a 

sufficiently-rose-like object is presented, the network will still identify the flowers as a rose 

(especially if the alternatives are sufficiently distinct from a rose – for example, a bear or a fish).  

Moreover, the network can tolerate surprisingly high degrees of noise and occlusion – even if the 

whole lower half of the rose is obscured (the photographer didn’t notice a hanging branch 

between himself and the rose), the network will still identify the image as a rose, because the 

non-obscured parts of the image are most rose-like compared to the other possible outputs
1
 [2].   

Though the Artificial Neural Network model is very straightforward and powerful, it is 

plagued by a very debilitating problem:  namely, the difficulty of figuring out the necessary 

number of “hidden nodes” and the appropriate connection strengths between each and every 

node
2
.  Teaching the network, therefore, requires very tedious and unnatural training, whereby 

weights are systematically adjusted until ALL of the appropriate inputs produce their 

corresponding appropriate outputs.  Moreover, once the network is created and trained, it is 

                                                 
1
 For completeness sake, it should be noted that a given neural network would be trained on hundreds of images of 

the same object, and its internal “rose-like” representation would actually be a mix of all of the defining 

characteristics of being a Rose, in the Platonic Forms sense of the word. 
2
 I had specifically glossed over this difficulty in the above paragraph, merely stating “tweak the weights of the 

paths between nodes until the output ‘rose’ is activate”.  The reality of the matter is that the “tweaking” is the 

hardest part of utilizing an Artificial Neural Network.. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

nearly impossible to teach it to respond to novel inputs, as doing so requires a near-complete re-

training of a now-even-more complex system. 

Thus, Artificial Neural Networks are NOT dynamic:  they do not allow the system to 

adapt to novel input at a whim.  ANNs are also fairly convoluted, as the different and 

unpredictable “weights” of the connections make it almost impossible to trace down an 

individual input node’s contribution to the final output (indeed, there might not be any rhyme or 

reason to some of the connections, other than that they happened to cause the network to produce 

the appropriate response).  With these criticisms in mind, it is therefore time to look at what 

makes DAN – the Dynamic Associative Network – different and more powerful that its 

predecessor ANN, the Artificial Neural Network described above. 

 

 

A STEP AHEAD:  THE DYNAMIC ASSOCIATIVE NETWORK MODEL 

Dr. Anthony Beavers, Director of Cognitive Science at the University of Evansville, has 

spent the last several years working on a more dynamic and adaptable model of cognition than is 

currently embodied in Artificial Neural Networks [1]. Superficially, Dr. Beavers’ Dynamic 

Associative Networks actually look rather similar to Artificial Neural Networks:  both models 

are composed of a large set of nodes, with weighted pathways spanning between the nodes.  Yet, 

DANs do not include the mysterious “hidden layer”
1
, and, more importantly, the weighted 

connections within DANs are forged dynamically on the basis of the networks’ experience, 

rather than on the basis of tedious systematic adjustments[1].  DANs also make no distinction 

about input and output nodes:  each node has separate input and output channels, so any of the 

nodes could be activated, and likewise any of the nodes could be potential contenders for being 

the network’s output. 

At this point, it is necessary to introduce a bit of terminology.  As stated above, beneath 

DAN’s exterior lies a collection of “nodes”, whereby a “node” is the model’s representation of a 

given “item”.  The distinction between the two terms is that “items” – which might be words, 

numbers, pictures, etc. – exist in the input stream and are disjoint from each other, whereas 

“nodes” – one for each “item” – are more complex entities that carry properties and that cross-

reference each other to form the basis of the model.  Just as in the tradition neural networks, each 

node carries a certain “activation value”, representing how actively it is contributing to the 

“current state” of the model, along with an “output value”, representing how viable of a 

candidate the node is for being the output of the network.   

When the model is initialized, it is a “Tabula rasa” (Latin) – a “blank slate”.  It contains 

no nodes, has experienced no long-term training, and is not in any “current state”.  As the model 

is “trained” by activating items in the input, it creates a new node for any non-existing item, and 

also creates a snapshot of the “current state” – that is, which nodes were active and to what 

degree – that gets implanted into each activated node.  This implanted connection serves to 

solidify the transition from the previous state (that is, from the previously activated nodes) to the 

                                                 
1
 At least, not in the traditional ANN sense – more about this can be found in the “Results” section. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

current state, ensuring that the next time that a similar input is encountered, the network will 

“remember” this past experience and steer its associations towards it.  That is, the weighted 

connections between nodes in a DAN signify the number of times that certain nodes co-occurred 

together during training
1
. 

It should be noted that the model (it itself) does not specify the sphere of influence that a 

given item in the input has:  Given a string of words, for example, there is nothing to say that the 

input should be broken down into X many chunks of words (where, within each chunk, each of 

the nodes would associate to each of the other nodes).  The training input itself, however, is 

usually in the form of some chunk-like units (for text, one plausible unit is sentences; for images, 

the unit might be the actual image, encoded in pixels, plus whatever description – such as “rose” 

– that accompanies the image).  Likewise, the model (in itself) does not specify to what degree 

items that are found in the input should be activated; for text, however, it might be logical to 

equally (fully) activate all of the words in a sentence, whereas for images it might be logical to 

activate each node to the extent that the given pixel was active in the picture (i.e.: if a node 

corresponding to the top-left pixel is fairly dark, it might get the value of 8 on a 10-point scale, 

whereas if it is only light-gray or white, the node might only get the value of 1 or 0). 

A simple example of a DAN is shown in Figure 2.  This particular network has been trained that 

US_States, Alaska, Indiana, and Virginia are all associated amongst themselves (during the 

“first” snapshot moment), and that Indiana, Virginia, and Continental are likewise associated 

amongst themselves (during the next snapshot moment).  Given the above training, when US 

States is selected, Alaska, Indiana, and Virginia (along with the already-activated US States) all 

become the “next contenders” as the most likely associations (based on the very limited training 

data and an even more limited “current state”).  When Continental is then selected in addition to 

US_States, only Indiana and Virginia remain as viable candidates for the most likely association.  

In “deducing” that only Indiana and Virginia correspond to both of the activated items, the 

network demonstrates some rudimentary cognitive abilities. 

                                                 
1
 This idea is very reminiscent of the well-known Hebbian neurological principle that nodes that “fire together, wire 

together” [4]. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

 

Figure 2:  A simple DAN, trained on “US_States Alaska Virginia Indiana ||| Continental Indiana 

Virginia” 
1
, and currently being queried for the result of activating “Continental” and 

“US_States”.  Nodes are represented by rectangles, whereby the border of each rectangle is the 

“input” of the node, and the inner circle is the “output” of the node.  The thick borders of 

Continental and US_States indicate that the two nodes are activated; moreover, the thick non-

dashed lines emanating from the two nodes indicate that the US_States and Continental are 

contributing one unit to each of the nodes to which they are connected.  The thin dashed arrows 

are pathways that were created during training, but that do not currently carry any activation 

(since their source node is inactive).  With the exception of the pathways marked “x2” (which 

were created due to the dual occurrence of Virginia and Indiana in both training “sentences”), 

all of the pathways are of unit weight.  The thick border around the outputs of Virginia and 

Indiana signify that both are nodes with the highest output, and therefore represent a “solution” 

to the network’s query. 

                                                 
1
 The triple-pipe sign ( ||| ), due to its distinct and not-normally-occurring nature, was chosen as a sentence separator.  

Hence the network was actually trained on two separate (independent) sentences:  first, “US_States Alaska Virginia 

Indiana”, and later “Continental Indiana Virginia”. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

MODELING DYNAMIC ASSOCIATIVE NETWORKS IN SOFTWARE 

My Senior Project task was to create a software suite for modeling and visualizing 

Dynamic Associative Networks
1
.  The parallel nature of computations within DANs, along with 

the need to keep my model highly adaptable (as a project for Dr. Beavers’ ongoing research, it 

was critical that my software suite could accommodate changes and/or new features for the DAN 

model) placed particular emphasis on careful software design. 

DANs (and ANNs) are massively parallel structures:  each node can be connected to a 

very large number of other nodes, and the change of activation on one node must result in a 

seemingly synchronous signal being sent down the network’s numerous pathways.  By the same 

token, the output of each node in a DAN is determined by signals being sent from countless 

other nodes, and it would be impractical for the network to re-calculate itself from scratch after 

every minor change in some node’s activation.  The computers that the simulation would run on, 

on the other hand, would be just regular PCs, which perform instructions in a sequential fashion, 

and would therefore have to emulate parallelism.  Likewise, the program would need to 

implement some clever scheme to minimize re-calculations, as a full re-calculation as described 

above would run in O(n
2
), meaning that the refresh time would quadruple with each doubling of 

the number of nodes; at 10,000 nodes, a minor change in just one node would require as much as 

100,000,000 re-computations! 

My solution to both of the above problems culminated in designing a buffered change-

propagating dependency-driven re-calculation scheme.  Dependency-driven re-calculations 

ensured that only nodes that were directly impacted by a change were re-computed; if nodes A 

and B were mutually associated, but neither was associated with node C, then an increased 

activation on A would still have no impact on C, and hence there would be no sense in updating 

node C!  Change propagation further simplified re-calculations, because instead of fully re-

calculating the marked-to-be-recalculated nodes (which would involve finding all of the nodes 

that contribute to the given node, and summing their individual contributions), my change-

propagating scheme simply passes the difference_from_former_value * connection_weight to 

each impacted node, exponentially reducing the complexity of the re-calculation (see Figure 3).  

Finally, buffering the changes – that is, waiting for all of the changes to cascade down the nodes 

before proceeding with other operations on the network – allowed the software suite to introduce 

all of the resulting changes in a seemingly singular “atomic” operation, which, for purposes of 

the DAN model, was identical to performing all of the changes in parallel.  A similar buffering 

scheme was also used for re-displaying the network on the screen after introducing changes to 

multiple nodes:  only when all of the changes had been performed would the computationally-

intensive re-display and re-visualize routines get called.  

                                                 
1
 A website dedicated to the development of the DAN Software Suite – complete with detailed explanations of the 

underlying model, documentation, sample files, and a JAVA runtime, can be found at 

http://csprojects.evansville.edu/~mz13/. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

 

Figure 3:  A change-propagating dependency-driven re-calculation scheme, whereby each node 

keeps a record of all of the OTHER nodes that get influenced by it (to reduce clutter, only Node 

A’s list is show above).  When a change in node A’s activation (input) takes place, the 

difference_in_actiovation, multiplied by the weight of each connection, gets propagated to all of 

the dependent (influenced) nodes (B and D); nodes that are not dependent on A (namely, node C) 

do not get impacted, and are hence not re-calculated. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

To facilitate the above scheme, at the very foundation of my program I created a Network 

class, which keeps a collection (technically, a <String, Node> hash table) of nodes.  Each Node, 

in turn, keeps track of its input, its output, and a collection (technically, a <Node, 

ChangeableInteger> hash table) of other nodes that are influenced by the given node.  

Associations are initiated by the Network (for example, the network might tell node A to 

associate itself to node B and D), at which point node A adds nodes B and D to its collection, or, 

if the nodes are already present, increments the ChangeableInteger that represents the weight of 

the connection to the given nodes.  When a node’s activation changes, the node notes the 

difference between the previous value and the current value, and then informs all of the other 

nodes to adjust their outputs accordingly (namely, by the difference * weight).  It can be proven 

by fairly straightforward inductive reasoning that as long as the original inputs and outputs of the 

nodes were valid, the above update algorithm would produce identical results to a brute-force re-

calculation, except that the above algorithm would accomplish this task exponentially faster.   

My software design also focused on separating the underlying DAN framework from the 

graphical user interface, and, indeed, on separating any components that did not necessitate being 

tied together
1
.  The components (53 to date) are mostly centered around the Network (Nodes, 

Settings, and helper classes) and the User Interface Toolbar (which ties together all of the 

supporting windows, tabs, and saving and opening dialogues).  Any “core” functions (including 

activation of specific nodes, creation of associations, and access to the nodes and settings) are 

routed through the Network, so that the user interface is essentially just a “wrapper” around a 

solid non-GUI foundation.  The Network does maintain two-way contact with the user interface, 

however, for functions such flushing the network’s contents onto the screen (i.e.: refreshing the 

display window or the visualization).  The separation of components is critical for introducing 

new features into the software suite, or even for modifying the underlying DAN model (see the 

Results section). 

 

 

RESULTS AND FUTURE WORK 

The Dynamic Associative Network model is still a very young model, developed by Dr. 

Anthony Beavers over the course of only the last few years; the DAN software suite is younger 

still, having been developed by me over the course of only the last six months.  Do we have any 

results to show that the DAN endeavor is worth pursuing? 

The question is not as straightforward as it might appear, thought I do believe that the 

answer is positive.  I will focus on three different aspects of our results:  results of the workings 

of the software suite (i.e.: my senior project; the purely engineering aspects), results of the DAN 

model (i.e.: almost exclusively Dr. Beavers’ work, though I did contribute one small but 

important aspect to the model, mentioned at the very end of this section), and the combined 

results in light of the overall goal to develop a “more robust and biologically-plausible cognitive 

model”. 

                                                 
1
 Central to this notion is a Model-View-Controller design pattern from [3].  Other design patterns (most notably the 

Observer, Abstract Factory, and Proxy design patterns) from the same book were also used throughout my code. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

 

Figure 4:  The DAN Software Suite, trained on simple associations between people (Einstein, 

Jefferson, Wicked Witch of the West, etc), their place of origin (German, American, Fictional, ...) 

and their occupations (Scientist, Politician, Philosopher, ...).  The network correctly deduces that 

when “Darth Vader” and “Occupation” are selected (in red in the Network Displayer, and 

closest to the “#CURRENTLY_ACTIVE#” tag in the Visualizer), the node that best associates to 

BOTH items in the query is “Evildoer” (green in the Network Displayer; part of the tier-2 circle 

in the Visualizer).  Each of the windows is independent of each other, governed solely by the 

underlying Network model that is at the very core of the software suite (and shown/hidden via 

the toggle buttons on the main toolbar). 

 

The software suite – due to the engineering considerations that led me to find an efficient 

dependency-driven design the “core” framework, and to implement the program in terms of 

modular components – turned out to be very successful.  From a performance benchmark point 

of view, the program can handle tens of thousands of nodes, and responds very quickly (i.e.: 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

learning a sample 4,569-word article, composed of 225 sentences, in under a second; this is a 

fairly remarkable achievement compared to a previous Excel-based DAN prototype, which 

would have taken over an hour to perform the same task).  From a convenience point of view, the 

program’s modular user interface allows the user to open only the windows that he/she wants to 

view (see Figure 4; in that figure, the open windows include the Toolbar, a Text Input window, a 

Network Visualizer, and a Display widow, but NOT the less-frequently-accessed Logger or 

Settings windows).  Moreover, even the individual components inside the windows are 

sometimes separate classes, such as the different tabbed options in the Text Input window; that 

way, if a new type of “activator” is required, it can easily be added to the currently-available 

options.   The least-finished part of the suite is the visualization component (still in early beta at 

the time of writing), but it will soon include color-coding and an auxiliary display to help the 

user visualize both the “grand scheme” of the network and the detailed individual relations of a 

selected node.
1
 

The underlying DAN model, to the extent that Dr. Beavers has had a chance to 

experiment with it, has also shown some promising results.  Powered by its dynamic 

associations, the model has demonstrated various rudimentary cognitive abilities (such as 

identifying members of particular categories or identifying similar objects; see Figure 4), the 

capacity for storing relational data (such as where an object is in relation to another object), and a 

potential for associating sequences of items (such as the digits in a phone number).   

The DAN model has not gone unchanged, however.  First of all, we have added the 

ability to create dissociations and one-way associations in addition to the default “full 

associations”; this allows for far greater flexibility in terms of teaching the network, permitting 

us to input causation-like associations (a causes b, but not vice-versa) and dissociations (the 

presence of a inhibits – that is, associates inversely on – b).  Dr. Beavers also added a “Tuning” 

mode, whereby positive weights are capped at 1:  this ensures that repeated associations of the 

same elements do not add carry undue significance.  Tuning is particularly helpful for processing 

texts, where words such as “the” might frequently surround nouns, and yet should not count as 

anything more significant than other words in the sentence
2
.  Finally, Dr. Beavers appended the 

concept of “Recurrence” to his original model, allowing the network to string its computation 

over time; through Recurrence, the Network takes its highest-output non-activated node(s) 

(shown in green in the Display window on the bottom of Figure 4) and activates them, while 

simultaneously decreasing the activation on the other active node (shown in red).  Doing so 

allows the Network to “spread its tentacles” to grab a hold of an answer, or, in the case of some 

of the models, to store the current state in an internal buffer.  In this latter case, Recurrence is 

somewhat analogous to an Artificial Neural Network’s “hidden layer”, with activation trickling 

from the input into this inner processing layer, before finally emerging in the output; but, unlike 

in the case of ANNs, these “hidden-layer” connections within a DAN are still forged on the basis 

of experience, rather than based on lengthy statistical adjustments. 

                                                 
1
 I should note that Visualization is the only NON-“home-grown” part of the software suite, employing an open-

source visualization framework called PREFUSE.  The framework is particularly helpful for aligning the nodes 

in a “Radial View” (though the complexity and the multi-purpose nature of the framework has also been the 

leading factor as to why the visualization is still in “beta”). 
2
 For example, given the learning “the boy woke up” and “the boy fell asleep”, querying the word “boy” under 

Tuning mode would equally activate all the rest of the words, even though “the” and “boy” carry a double 

connection between each-other, due to their dual mutual occurrence during training. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

It is not yet clear whether a Dynamic Associative Network is more robust than an 

Artificial Neural Network:  there has simply not been enough time for Dr. Beavers and his 

colleagues to experiment with the model and to make use of the software suite that I have 

developed.  The networks that Dr. Beavers has created thus far, however, were received with 

curiosity and some enthusiasm by a number of cognitive scientists and computer scientists at 

Indiana University at Bloomington, so the question of robustness definitely remains an open 

(and, in my mind, a hopeful) one [1]. 

As for biological plausibility, DANs certainly do outperform Artificial Neural Networks.  

Most critically, unlike ANNs, DANS are able to append to their existing learning “on the fly”, 

much like everyday experience tells us about the cognition of animals and humans.  DANs also 

follow the previously-mentioned Hebbian neurological principle that nodes that “fire together, 

wire together” [4]; this is in stark contrast to ANNs, which can wire nodes in an utterly 

unpredictable (and irrational) fashion.  Initially, Dr. Beavers’ DAN model did suffer from 

requiring an ever-growing list of dependencies between nodes (even when repeating previously-

made associations), but I discovered that it was possible to amend this biological implausibility 

by utilizing weighted connections, which is how I’ve formulated the DAN model in my software 

suite and throughout this paper.  Indeed, under all biological-plausibility criteria that I am aware 

of, Dynamic Associative Networks are simply more plausible than Artificial Neural Nets. 

More research – indeed, much more research – will be necessary before the DAN model 

could even attempt to supplant the Artificial Neural Network model, if, indeed, that is ever to be 

the case.  Yet I believe that the stage has been partially set, both through the refinement of Dr. 

Beavers’ conception of Dynamic Associative Networks, and through my creation of a software 

suite that is capable of adequately modeling and visualizing DANs.  As I prepare to graduate 

from the University of Evansville, I hope that my computer science successors, working under 

Dr. Beavers’ continued supervision, will find the path cleared on their way to developing a more 

robust and biologically-plausible cognitive model. 

 

SOURCES 

[1] Beavers, Anthony F., Director of Cognitive Science.  University of Evansville.  Evansville, 

IN.  Personal correspondence.  Near-weekly meetings from April 2008 to March 2009. 

[2]  Churchland, P. M.  (2000).  The Engine of Reason, the Seat of the Soul.  Cambridge, 

Massachusetts:  The MIT Press. 

[3]  Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides.  (1994).  Design Patterns: 

Elements of Reusable Object-Oriented Software.  Indianapolis, Indiana:  Addison-Wesley 

Professional. 

[4] Hebb, D.O. (1949).  The Organization of Behavior.  New York:  John Wiley. 



 

Proceedings of the 2009 University of Evansville Undergraduate Conference for 

Science, Engineering, and Mathematics.  Copyright 2009, University of Evansville. 

BIOGRAPHICAL INFORMATION 

Michael Zlatkovsky is a student at the University of Evansville, pursuing a dual-degree in 

Computer Science and Cognitive Science, with minors in Mathematics and Psychology.  He has 

worked with Dr. Anthony Beavers on the Dynamic Associative Networks project for the past 

year, with additional guidance from his project mentor, Dr. Robert Morse.  More information 

about the DAN Software Suite, along with a JAVA runtime and sample files, can be found on 

Michael’s website at http://csprojects.evansville.edu/~mz13/.  Michael will be graduating from 

U.E. this coming May, and will subsequently be enrolling in a Joint-PhD program (also in 

Computer Science and Cognitive Science), most likely at Indiana University.   


